粉末冶金的發展歷史、工藝優點及基本工序
粉末冶金發展歷史:
粉末冶金方法起源于公元前三千多年。制造鐵的第一個方法實質上采用的就是粉末冶金方法。而現代粉末冶金技術的發展中共有三個重要標志:
1、克服了難熔金屬熔鑄過程中產生的困難。1909年制造電燈鎢絲,推動了粉末冶金的發展;1923
年粉末冶金硬質合金的出現被譽為機械加工中的革命。
2、三十年代成功制取多孔含油軸承;繼而粉末冶金鐵基機械零件的發展,充分發揮了粉末冶金
少切削甚至無切削的優點。
3、向更高級的新材料、新工藝發展。四十年代,出現金屬陶瓷、彌散強化等材料,六十年代末
至七十年代初,粉末高速鋼、粉末高溫合金相繼出現;利用粉末冶金鍛造及熱等靜壓已能制造高
強度的零件。
粉末冶金工藝的優點:
1、絕大多數難熔金屬及其化合物、假合金、多孔材料只能用粉末冶金方法來制造。
2、由于粉末冶金方法能壓制成最終尺寸的壓坯,而不需要或很少需要隨后的機械加工,故能大
大節約金屬,降低產品成本。用粉末冶金方法制造產品時,金屬的損耗只有1-5%,而用一般熔
鑄方法生產時,金屬的損耗可能會達到80%。
3、由于粉末冶金工藝在材料生產過程中并不熔化材料,也就不怕混入由坩堝和脫氧劑等帶來的
雜質,而燒結一般在真空和還原氣氛中進行,不怕氧化,也不會給材料任何污染,故有可能制取
高純度的材料。
4、粉末冶金法能保證材料成分配比的正確性和均勻性。
5、粉末冶金適宜于生產同一形狀而數量多的產品,特別是齒輪等加工費用高的產品,用粉末冶
金法制造能大大降低生產成本。
粉末冶金工藝的基本工序是:
1、原料粉末的制備。現有的制粉方法大體可分為兩類:機械法和物理化學法。而機械法可分為:
機械粉碎及霧化法;物理化學法又分為:電化腐蝕法、還原法、化合法、還原-化合法、氣相沉
積法、液相沉積法以及電解法。其中應用最為廣泛的是還原法、霧化法和電解法。
2、粉末成型為所需形狀的坯塊。成型的目的是制得一定形狀和尺寸的壓坯,并使其具有一定的
密度和強度。成型的方法基本上分為加壓成型和無壓成型。加壓成型中應用最多的是模壓成型。
3、坯塊的燒結。燒結是粉末冶金工藝中的關鍵性工序。成型后的壓坯通過燒結使其得到所要求
的最終物理機械性能。燒結又分為單元系燒結和多元系燒結。對于單元系和多元系的固相燒結,
燒結溫度比所用的金屬及合金的熔點低;對于多元系的液相燒結,燒結溫度一般比其中難熔成分
的熔點低,而高于易熔成分的熔點。除普通燒結外,還有松裝燒結、熔浸法、熱壓法等特殊的燒
結工藝。
4、產品的后序處理。燒結后的處理,可以根據產品要求的不同,采取多種方式。如精整、浸油、
機加工、熱處理及電鍍。此外,近年來一些新工藝如軋制、鍛造也應用于粉末冶金材料燒結后的
加工,取得較理想的效果。
粉末冶金材料和制品的今后發展方向:
1、有代表性的鐵基合金,將向大體積的精密制品,高質量的結構零部件發展。
2、制造具有均勻顯微組織結構的、加工困難而完全致密的高性能合金。
3、用增強致密化過程來制造一般含有混合相組成的特殊合金。
4、制造非均勻材料、非晶態、微晶或者亞穩合金。
5、加工獨特的和非一般形態或成分的復合零部件
免責聲明:上文僅代表作者或發布者觀點,與本站無關。本站并無義務對其原創性及內容加以證實。對本文全部或者部分內容(文字或圖片)的真實性、完整性本站不作任何保證或承諾,請讀者參考時自行核實相關內容。本站制作、轉載、同意會員發布上述內容僅出于傳遞更多信息之目的,但不表明本站認可、同意或贊同其觀點。上述內容僅供參考,不構成投資決策之建議;投資者據此操作,風險自擔。如對上述內容有任何異議,請聯系相關作者或與本站站長聯系,本站將盡可能協助處理有關事宜。謝謝訪問與合作! 中鎢在線采集制作.
|